First-ever demonstration of autonomous bird-like robot perching on a human hand

 AIAA Aerospace America 2012 Year in Review (Intelligent Systems)  The University of Illinois at Urbana-Champaign’s Aerospace Robotics and Control Lab developed a bird-like MAV that can make a precise perched landing on a small target or human hand. (Read more)

Recent media coverage of our robotic perching flight research (compiled by the College of Engineering Communication Office)

  • GigaOM.com (May 1) -- By the virtue of their size and speed, birds are uniquely capable of efficient flight while flapping their wings and while gliding. Researchers at the University of Illinois at Urbana-Champaign have duplicated the control functions that allow birds to successfully perform a soft landing—in this case, perching on a human hand (see video)
  • daily-mail
  • Daily Mail (UK, May 2) Mimicking Mother Nature: Scientists create a fixed-wing flying robot that can slow down and land like a bird
  • Crains-Chicago
  • Crain's Chicago Business (May 28) Engineers have a thing with feathers
  • ieeespectrum
  • IEEE Spectrum (May 3) Flapping Robotic Birdplane Lands Right on Your Hand
  • engadget
  • Engadget (New York City, May 2) A bird in the hand thanks to a robot that can perch
  • The Engineer (UK, May 3) Bird-like robot demonstrates perched landing manoeuvre
  • wired
  • Wired.com.uk (UK, May 3) Robot bird gracefully lands on a human hand
  • dailyplanet
  • Discovery Channel-Canada (May 3; story begins at 5:45 min. into program)
  • discovery
  • Discovery News (May 4) FLAPPING-WINGED ROBOT PERCHES ON HAND
  • cnet
  • CNET(San Francisco, May 4) Researchers build robot bird that can land on your hand. The U.S. Air Force has funded a research project that attempts to determine how to build small flying robots that can have high degrees of avian-like control.
  • slate
  • Slate (May 4) The Week's Best Robot Videos: A Real Rosey Jetson
  • Boing Boing (May 7) Robot bird lands on human hand
  • Futurity (May 8) Bird robot sticks landing to perch on palm
  • Stuff.co.nz (May 10) Robot bird perches on human hand
  • download
  • Sydney Morning Herald (Austrailia, May 10) Robot bird perches on human hand
  • Brisbane Times (Austrailia, May 10) Robot bird perches on human hand
  • ASME Mechanical Engineering magazine (May 16)
  • Ubergizmo (May 17) Robot bird perches on a human hand
  • Phys.org (May 3) Bird-like robot perches on a human hand
  • AVweb.com(June 3) Robot Can Perch On Landing
  • Kurzweil (May 3)
  • Gizmag (May 3) Bird-like autonomous gliding robot can land on a human hand
  • ScienceBlog (May 1)

http://www.youtube.com/watch?v=2QqTcQ1BxIs

By the virtue of their size and speed, birds are uniquely capable of efficient flight while flapping their wings and while gliding. Researchers at the University of Illinois at Urbana-Champaign have duplicated the control functions that allow birds to successfully perform a soft landing—in this case, perching on a human hand. “We believe we have the first demonstration of autonomous/robotic flight of a bird-like micro aerial vehicle (MAV) perching on a human hand,” stated Soon-Jo Chung, an assistant professor in the Department of Aerospace Engineering at Illinois. Because the wings of ornithopters—birds or aircraft with flapping wings—are inherently capable of being reoriented, this capability can be used for  controlling and maneuvering the aircraft in a gliding phase, thereby eliminating the need for additional traditional actuators. Gliding is an effective way to conserve energy while soaring, descending, and landing.

handperch3new
handperch3new

“The driving philosophy behind the work is that the maneuverability and control efficiency of avian flight can be replicated by applying their actuation and control principles to advanced MAVs designed on the size scale of small birds,” explained Aditya Paranjape, a postdoctoral scholar working on this project. The result is based on his PhD thesis and a series of journal papers with Chung. “We have developed an articulated-wing-based concept for an agile robotic aircraft inspired by birds,” Paranjape added. “Of all maneuvers executed by flapping wing aircraft in a gliding phase, a perched landing is arguably the most challenging.” Perching is routinely used by birds to land on objects such as tree branches, power wires, or building ledges. According to the researchers, there are two factors that make perching challenging to engineer: 1) the maneuver’s duration is very short, on the same order as the aircraft dynamics, and 2) a high level of position accuracy is required for a successful perched landing. “Our aerial robot concept lacks a vertical tail for improved agility, similar to birds, which renders it dynamically unstable and exacerbates both of these factors,” Paranjape said. “We choose a perching maneuver to demonstrate the capabilities of our articulated-winged aircraft concept, novel guidance algorithms, and control design. In particular, the ability to perform perched landings on a human hand endows our robot with the ability to operate around humans.” A typical perching maneuver consists of two phases—a gliding phase to bring the bird to a suitable position with respect to the landing spot, and a rapid pitch up (usually to a post-stall angle of attack) accompanied by an instantaneous climb and rapid deceleration. The researchers noted that the success of the maneuver can be severely impeded by the lateral-directional motion (yaw and roll), particularly when the perched landing has to be accomplished on a small surface such as an electric pole or a human palm. In the absence of a vertical tail, wing articulation is a promising capability which can be used for both longitudinal and lateral-directional control. Chung, who joined the Illinois' faculty in 2009, brought with him a vision for developing aircraft that mimic the autonomy and agility of bats. “There’s a lot to learn from bio systems,” Chung said. “Bats can fly with damaged wings. They are so agile and highly maneuverable; they can make rapid 180-degree turns autonomously and they can fly indoors without colliding with obstacles. These qualities are desirable for small aircraft that could be used in surveillance, particularly in urban settings where obstacles hamper movement and satellite control is blocked.” The MAV project was funded by the Air Force Office of Scientific Research.

http://www.youtube.com/watch?feature=player_embedded&v=bSctVKEwAGM

_____________________

http://engineering.illinois.edu/news/2012/04/27/first-ever-demonstration-autonomous-bird-robot-perching-a-human-hand

Contact: Soon-Jo Chung, Department of Aerospace Engineering, 217/244-2737 Aditya Avinash Paranjape, Department of Aerospace Engineering Writer: Rick Kubetz, Engineering Communications Office, University of Illinois at Urbana-Champaign, 217/244-7716.